
A Closer look at RSA and ECC
Aditya Kumar Kommera1, Keerthana Kommera2, Praneeth Kumar Gunda3

1Dept. of Information Technology,
Krishna Murthy Institute of Technology and Engineering,

Ghatkesar, Andhra Pradesh

2Dept. of Information Technology,
Guru Nanak Engineering College

 Ibrahimpatnam, Andhra Pradesh, India

3Software Engineer,
eIQ networks R&D India Pvt. Ltd.,
 Hyderabad, Andhra Pradesh, India

Abstract— Information Security plays a key role in the field of
modern computing. The public Key encipherment is the
security mechanism which uses the idea of separating the key
used to encrypt a message from the one used to decrypt it .The
most widely used and industrially accepted algorithms of
Public Key Cryptosystem are RSA and ECC(Elliptic Curve
Cryptosystem). Even though decades of research has been
done to answer the question “Which is efficient among RSA
and ECC?” there is no conclusion from the researchers yet
now. Through this project, we try to answer this question by
providing some experimental results and an in-depth
comparison between RSA and ECC on different tradeoffs
involved in choosing them such as Speed of Encryption/
Signature etc., and Platform Considerations even. This will
help the industry to choose one among them.

Keywords— Elliptic Curve Cryptography, RSA Algorithm,
Performance Evaluation

I. INTRODUCTION

In traditional cryptography, the sender and receiver of a
message know and use the same secret key; the sender uses
the secret key to encrypt the message, and the receiver uses
the same secret key to decrypt the message. This method is
known as secret key or symmetric cryptography. The main
challenge is getting the sender and receiver to agree on the
secret key without anyone else finding out. If they are in
separate physical locations, they must trust a courier, a
phone system, or some other transmission medium to
prevent the disclosure of the secret key. Anyone who
overhears or intercepts the key in transit can later read,
modify, and forge all messages encrypted or authenticated
using that key. The generation, transmission and storage of
keys is called key management (see Section 4.1); all
cryptosystems must deal with key management issues.
Because all keys in a secret-key cryptosystem must remain
secret, secret-key cryptography often has difficulty
providing secure key management, especially in open
systems with a large number of users.

In order to solve the key management problem, Whitfield
Diffie and Martin Hellman [1] introduced the concept of
public-key cryptography in 1976. Public-key cryptosystems
have two primary uses, encryption and digital signatures. In
their system, each person gets a pair of keys, one called the
public key and the other called the private key. The public
key is published, while the private key is kept secret. The
need for the sender and receiver to share secret information

is eliminated; all communications involve only public keys,
and no private key is ever transmitted or shared. In this
system, it is no longer necessary to trust the security of
some means of communications. The only requirement is
that public keys be associated with their users in a trusted
(authenticated) manner (for instance, in a trusted directory).
Anyone can send a confidential message by just using
public information, but the message can only be decrypted
with a private key, which is in the sole possession of the
intended recipient. Furthermore, public-key cryptography
can be used not only for privacy (encryption), but also for
authentication (digital signatures) and other various
techniques.
Encryption When Alice wishes to send a secret message to
Bob, she looks up Bob's public key in a directory, uses it to
encrypt the message and sends it off. Bob then uses his
private key to decrypt the message and read it. No one
listening in can decrypt the message. Anyone can send an
encrypted message to Bob, but only Bob can read it
(because only Bob knows Bob's private key).
Digital Signatures To sign a message, Alice does a
computation involving both her private key and the
message itself. The output is called a digital signature and is
attached to the message. To verify the signature, Bob does a
computation involving the message, the purported signature,
and Alice's public key. If the result is correct according to a
simple, prescribed mathematical relation, the signature is
verified to be genuine; otherwise, the signature is fraudulent,
or the message may have been altered.

 Since the introduction of public key cryptosystem by
Diffie Hellman [1] in 1976, numerous public key
cryptosystems have been proposed and implemented. The
first practical implementation followed in 1977 when
Rivest, Shamir and Adleman proposed their now well-
known RSA cryptosystem [2], in which security is based on
the intractability of the integer factorization problem. The
first use of elliptic curve in cryptography parlance was
Lenstra’s elliptic curve factorization algorithm. Inspired by
this sudden unexpected application of elliptic curves in
integer factorization, in the mid 1980s, Neal Koblitz and
Victor Miller independently introduced the elliptic curve
public key cryptography system, a method based on the
discrete logarithmic problem over the points on an elliptic
curve. Elliptic curve cryptographic schemes are public key
mechanisms that provide the same functionality as RSA
schemes. However, the security of ECC is based on the

Aditya Kumar Kommera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2220-2224

2220

hardness of a different problem, namely the elliptic curve
discrete logarithm problem (ECDLP). Currently the best
algorithms known to solve the ECDLP have fully
exponential running time, in contrast to the sub
exponential-time algorithms known for the integer
factorization problem. This means that a desired security
level can be attained with significantly smaller keys in
elliptic curve systems than is possible with their RSA
counterparts. The advantages that can be gained from
smaller key sizes include speed and efficient use of
computing power, bandwidth and storage

II. RSA CRYPTOSYSTEM

RSA was proposed in 1977 shortly after the discovery
of public-key cryptography. It has survived all attempts to
break it for many years and is considered very strong. We
will summarize how to use the method.

1. Pick two large primes, p and q.
2. Multiply them together to get n = p x q.
3. Compute z =(p-1) x (q-1). This will be the mod of

the exponents.
4. Pick any number d, which is smaller than, and

relatively prime to, z.
5. Solve the diophantine equation d x e=z x k+1. The

value of k is not important, but the value of e is.
We have to make sure a positive value of e, which
is less than z

That is all. The public key is order pair (n, e) and private
key is also order pair (n, d).

A. Encryption/ Decryption

Divide the message into blocks, so that each plaintext

block, P, lies in the interval 0≤P<n. We can group the
message into plaintext blocks of k bits, where k is the
largest integer for which 2k<n is true. Anyone wishing to
send a message to Bob make use of e and n. If Alice wants
to send a message to Bob, he calculates the ciphertexts as

C=Pe(mod n)
Alice sends C, the cipehertext, to Bob.

When Bob receives the ciphertext, he uses his private
key d to decrypt the message as

P=Cd(mod n)

B. Signature Generation/ Verification

Signer sends the Message m with his private key (n, d). i.e.,
 S≡md(mod n).

Then the verification at the receiver side is carried out using
the public key (n,e) of the signer if

Se≡m(mod n).

III. ELLIPTIC CURVE CRYPTOSYSTEM

In this section, we include a brief overview of ECC.
ECC can be used to encrypt plaintext messages, M into
cipher texts, C, and decrypt cipher texts into plaintext
messages. The plaintext message M is to be encoded into a
point Pm from the finite set of points in the elliptic group,
Ep(a,b). One of the design issues in the use of the elliptic
curve for cryptography is the mapping of arbitrary plaintext
into points on the elliptic curve. One method used in this
paper is given below. We assume a curve of the form

y2(mod p)=x3+ax+b(mod p)

A Key Generation

The entire document should be in Times New Roman or
Times font. Type 3 fonts must not be used. Other font
types may be used if needed for special purposes.

1.Alice and Bob agree on a generator point G=(xg,yg)
and an elliptic group Ep(a,b).

2.Alice chooses an integer na and calculates
Pa=naG=(xa,ya)

3. Alice’s public key is Pa=(xa,ya) and his private key is
na.
4. Bob also chooses an integer nb and calculates

Pb=nbG=(xb,yb)
5. Bob’s public key is Pb=(xb,yb) and his private key is

nb.

B. Encryption/ Decryption

Alice wishes to send a message Pm= (xm,ym) to Bob.
He carries out the following steps

1. Alice chooses a random number k.
2. He calculates c1=kG and c2=Pm+kPb.
3. Alice sends the Cm={c1,c2 } as cipher text to Bob.

Upon receiving the ciphertext pair (c1,c2) from Alice, Bob
recovers the message as follows:

He multiplies c1 by his private key nb and subtract it
from c2. That is, he calculates c2–nbc1= (Pm+kPb) -nb(kG)
=(Pm+knbG) -nbkG =Pm =(xm,ym)

C. Signature Generation/ verification

Suppose Alice wants to send a signed message to Bob.
Initially, the curve parameters
(q,FR,a,b,[DomainParameterSeed,]G,n,h) must be agreed
upon. q is the field size; FR is an indication of the basis
used; a and b are two field elements that define the equation
of the curve; DomainParameterSeed is an optional bit string
that is present if the elliptic curve was randomly generated
in a verifiable fashion;G is a base point of prime order on
the curve (i.e., G = (xG,yG)); n is the order of the point G;
and h is the cofactor (which is equal to the order of the
curve divided by n).

Also, Alice must have a key pair suitable for elliptic
curve cryptography, consisting of a private key dA (a
randomly selected integer in the interval [1,n − 1]) and a
public key QA (where QA = dAG). Let Ln be the bit length
of the group order n.For Alice to sign a message m, she
follows these steps:

1. Calculate e = HASH(m), where HASH is a cryptographic

hash function, such as SHA-1, and let z be the Ln
leftmost bits of e.

2. Select a random integer k from [1,n − 1].
3. Calculate r = x1(mod n), where (x1,y1) = kG. If r = 0, go

back to step 2.
4. Calculate s = k − 1(z + rdA)(mod n). If s = 0, go back to

step 2.
5. The signature is the pair (r,s).

For Bob to authenticate Alice's signature, he must have a

copy of her public key QA. If he does not trust the source of
QA, he needs to validate the key (O here indicates the
identity element):

Aditya Kumar Kommera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2220-2224

2221

1. Check that QA is not equal to O and its coordinates
are otherwise valid

2. Check that QA lies on the curve
3. Check that nQA = O

After that, Bob follows these steps:
1. Verify that r and s are integers in [1,n − 1]. If not, the

signature is invalid.
2. Calculate e = HASH(m), where HASH is the same

function used in the signature generation. Let z be the Ln
leftmost bits of e.

3. Calculate w = s − 1(mod n).
4. Calculate u1 = zw(mod n) and u2 = rw(mod n).
5. Calculate (x1,y1) = u1G + u2QA.
6. The signature is valid if r = x1(mod n), invalid

otherwise.

IV. PERFORMANCE EVALUATION OF RSA AND ECC

A. In terms of Security
The saying "A chain is no stronger than its weakest

link" is a very suitable for describing attacks on
cryptosystems. The attackers' instinct is to go for the
weakest point of defense, and to exploit it. Sometimes the
weakness may have appeared insignificant to the designer
of the system, or maybe the cryptanalyst will discover
something that was not seen by anyone before. The
important thing to remember (and this has been proven time
and time again in the history of cryptography) is that no
matter how secure you think your system is, there may be
something you have not considered.
Attacks on RSA: Even though the security of RSA is said
to be wholly dependent on Prime Factorization there are
other possibilities of attacks which are summarized as:
Searching the message space: One of the seeming
weaknesses of public key cryptography is that one has to
give away everybody the algorithm that encrypts the data
except the key. If the message space is small, then one
could simply try to encrypt every possible message block,
until a match is found with one of the ciphertext blocks. In
practice this would be an insurmountable task because the
block sizes are quite large.
Guessing d: Another possible attack is a known ciphertext
attack. This time the attacker knows both the plaintext and
ciphertext (they simply has to encrypt something). They
then try to crack the key to discover the private exponent, d.
This might involve trying every possible key in the system
on the ciphertext until it returns to the original plaintext.
Once d has been discovered it is easy to find the factors of n.
Then the system has been broken completely and all further
ciphertexts can be decrypted.
 The problem with this attack is that it is slow. There are
an enormous number of possible ds to try. This method is a
factorizing algorithm as it allows us to factor n. Since
factorizing is an intractable problem we know this is very
difficult. This method is not the fastest way to factorize n.
Therefore one is suggested to focus effort into using a more
efficient algorithm specifically designed to factor n.
Cycle Attack: This attack is very similar to the last. The
idea is that we encrypt the ciphertext repeatedly, counting
the iterations, until the original text appears. This number of
re-cycles will decrypt any ciphertext. Again this method is
very slow and for a large key it is not a practical attack. A
generalisation of the attack allows the modulus to be
factored and it works faster the majority of the time. But

even this will still have difficulty when a large key is used.
Also the use of p-- strong primes aids the security.
Common Modulus: One of the early weaknesses found
was in a system of RSA where the users within an
organization would share the public modulus. That is to say,
the administration would choose the public modulus
securely and generate pairs of encryption and decryption
exponents (public and private keys) and distribute them all
the employees/users. The reason for doing this is to make it
convenient to manage and to write software for.
Faulty Encryption: Joye and Quisquater showed how to
capitalise on the common modulus weakness due to a
transient error when transmitting the public key. Consider
the situation where an attacker, Malory, has access to the
communication channel used by Alice and Bob. In other
words, Malory can listen to anything that is transmitted, and
can also change what is transmitted. Alice wishes to talk
privately to Bob, but does not know his public key. She
requests by sending an email, to which Bob replies. But
during transmission, Malory is able to see the public key
and decides to flip a single bit in the public exponent of
Bob, changing (e,n) to (e',n).

When Alice receives the faulty key, she encrypts the
prepared message and sends it to Bob (Malory also gets it).
But of course, Bob cannot decrypt it because the wrong key
was used. So he lets Alice know and they agree to try again,
starting with Bob re-sending his public key. This time
Malory does not interfere. Alice sends the message again,
this time encrypted with the correct public key.

Malory now has two ciphertexts, one encrypted with the
faulty exponent and one with the correct one. She also
knows both these exponents and the public modulus.
Therefore she can now apply the common modulus attack
to retrieve Alice's message, assuming that Alice was foolish
enough to encrypt exactly the same message the second
time.

And other common attacks are Side channel attacks like
Timing attacks etc.,
Attacks on ECC: Mainly the security of ECC depends on
ECDLP. It is already proven that ECC is vulnerable to
Shor’s algorithm for solving DLP. Many other algorithms
have been developed to solve the DLP, some of them are
Pollard-Rho’s Attack, Pohling-Hellman’s Algorithm etc.,
 Other kinds of attacks that have been tried on ECC are
Side channel attacks, like Power Analysis Attacks, Cache
Based Attacks etc.,

B. System Requirements for Setting up of

Cryptosystem
In setting up any cryptosystem a certain amount of

computation is required. In this section we will compare
some of the basic set-up requirements for elliptic curve
cryptosystems with those for users of RSA

There are several approaches for selecting an appropriate
elliptic curve. They all tend to be mathematically very
complicated and they have some limitations. It is perhaps
worth pointing out at this stage that implementing elliptic
curve cryptosystems can in fact be quite challenging
without a good understanding of the mathematics of elliptic
curves.

So we see that setting up the system parameters for an
elliptic curve cryptosystem is quite involved. However,
once it is done, the resulting elliptic curve parameters may

Aditya Kumar Kommera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2220-2224

2222

be used for multiple users within a group (just as in the case
of discrete logarithm cryptosystems) and each user has his
or her public/private key pair. These key pairs are easy to
generate and consist of a random, secret integer k that acts
as the private key and that multiple of the generator point G
on the curve that acts as the public key kG for the user. The
security assumption is that it is hard to compute the private
key k and the public key kG.

By way of comparison, the RSA cryptosystem requires
no system parameters. The first stage of computing a
public/private key pair consists of the user generating two
primes of the appropriate size and computing the public
modulus n as their product. This part of the computation
can be rather computationally intensive (though not as
intensive as setting up elliptic curve system parameters).
The second stage for the user is then to compute the secret
exponent d, or certain information that allows decryption to
be optimized (so-called Chinese Remainder Theorem
information), from what is usually a fixed public exponent e.
The calculation of the secret exponent (or related
information) is insignificant when compared to the time
required to generate the primes. The various requirements
for the different cryptosystems are given in Table 1 below.

TABLE I
SYSTEM REQUIREMENTS FOR RSA AND ECC CRYPTOSYSTEMS

 RSA ECES and ECDSA

System
Parameters

None

the field F, two field
elements that represent the
curve, the generator G on the
curve and the order of G

Public Key
Modulus n and
exponent e

point P= kG on the
elliptic curve

Private Key

Exponent d or
corresponding
CRT
information

an integer k where 0<k<q

C. Storage Requirements

Interest in elliptic curve cryptosystems is fueled by the
appeal of basing a cryptosystem on a different hard problem
and the fact that currently such a choice appears to lead to
smaller system parameters and key sizes for the same level
of security.

Throughout this section we will be comparing the
requirements and performance of 1024-bit RSA (with
public exponent 216+1) with an elliptic curve cryptosystem
implemented over the field GF(q) where q is 160 bits in
length and the field is either of characteristic 2 or of odd
characteristic. For the purposes of this note, we will assume
that these different fields have essentially the same
implementation requirements. In Table 3 we give a rough
comparison of the storage requirements in bits for the
schemes of interest to us in this note.

TABLE III
STORAGE REQUIREMENTS

RSA 1024 bit n and
e=216+1

ECES and
ECDSA on GF(q)

System
Parameters

0 (4*160)+1= 641

Public Key 1024+17=1041 160+1=161

Private Key
160 (801 with
system parameters)

2048(or 2560 with
CRT information)

D. Performance
 With regard to the speed of implementation of these

cryptosystems the situation is still very unclear. The basic
elliptic curve operations are in fact quite complicated 3
(more complicated in fact than the operations required for
RSA) and so if elliptic curve cryptosystems ever require the
same size of parameters as does an implementation of RSA
then the elliptic curve cryptosystem can be expected to be
slower. In fact it is possible to envisage situations where
even if the elliptic curve implementation uses smaller
parameters than some implementation of RSA, the latter
might remain the more efficient in terms of practical use. At
present however, the current parameter advantages for
elliptic curve cryptosystems are such that the speed of
implementation can compare favourably with the
performance of RSA.

Putting quantitative data into this part of the note is very
difficult. We know of no figures or benchmarks with which
we can compare an optimized version of RSA on one
platform with an optimized version of some elliptic curve
cryptosystem. However we make an attempt to qualitatively
compare the performance of the various systems to the
speed of RSA for the relevant operation and these results
are presented in Table 2. These figures should be taken as a
guide only and in making these comparisons we have
assumed that one elliptic curve addition takes roughly the
same effort as 10 modular multiplications. We feel that, for
the purposes of this note, this figure will give a rough but
fair comparison between cryptosystems. All techniques for
pre computation that apply to discrete logarithm
cryptosystems will apply equally to systems based on
elliptic curves. It is interesting to note that even with the
smaller keys required for elliptic curve cryptosystems,
signature verification with RSA remains advantageous.

TABLE III
COMPARATIVE PERFORMANCE OF ECC AND RSA

 RSA 1024 bit n
and e=216+1

ECES and
ECDSA on GF(q)

Encryption 17 120
Decryption 384 60
Signing 384 60
Verification 17 120

Table 3 gives you the comparative performance of

elliptic curve cryptosystems over GF(q) where q is 160 bits
in length when compared with 1024-bit RSA and discrete
logarithm cryptosystems for various cryptographic
functions. Figures in the table are the number of time units
required to complete the given operation if we assume that
one 1024-bit modular multiplication requires one unit of
time. Not included in this table is that Diffie-Hellman key
agreement requires 480 time units for each party. These
figures do not take account of any of the various
optimizations possible and they should be viewed as a
rough comparison only.

ACKNOWLEDGEMENTS

The Authors wish to thank Mr. N.M.S Desai for his
comments, which helped in improving presentation of this
paper. A Vardy wishes to thank Ch. Srinivasulu for his
invaluable support.

Aditya Kumar Kommera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2220-2224

2223

REFERENCES
[1] Whitfield Diffie and Martin E. Hellman “New Directions in

Cryptography-Invited Paper”
[2] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems”, 1977.
[3] Ranbir Soram and Memeta Khomdram ,”Juxtaposition of RSA and

Elliptic Curve Cryptosystem”,2009.
[4] Kumanduri and Romero, Number Theory with Computer

Applications, Prentice- Hall of India, New Delhi, 2001.
[5] Blake,Seroussi, and Smart, Elliptic Curves in

cryptography,Cambridge University Press,1999.

Aditya Kumar Kommera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2220-2224

2224

