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Abstract— Information Security plays a key role in the field of 
modern computing. The public Key encipherment is the 
security mechanism which uses the idea of separating the key 
used to encrypt a message from the one used to decrypt it .The 
most widely used and industrially accepted algorithms of 
Public Key Cryptosystem are RSA and ECC(Elliptic Curve 
Cryptosystem). Even though decades of research has been 
done to answer the question “Which is efficient among RSA 
and ECC?” there is no conclusion from the researchers yet 
now. Through this project, we try to answer this question by 
providing some experimental results and an  in-depth 
comparison between RSA and ECC on different tradeoffs 
involved in choosing them such as Speed of Encryption/ 
Signature etc., and Platform Considerations even. This will 
help the industry to choose one among them. 
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I. INTRODUCTION 

In traditional cryptography, the sender and receiver of a 
message know and use the same secret key; the sender uses 
the secret key to encrypt the message, and the receiver uses 
the same secret key to decrypt the message. This method is 
known as secret key or symmetric cryptography. The main 
challenge is getting the sender and receiver to agree on the 
secret key without anyone else finding out. If they are in 
separate physical locations, they must trust a courier, a 
phone system, or some other transmission medium to 
prevent the disclosure of the secret key. Anyone who 
overhears or intercepts the key in transit can later read, 
modify, and forge all messages encrypted or authenticated 
using that key. The generation, transmission and storage of 
keys is called key management (see Section 4.1); all 
cryptosystems must deal with key management issues. 
Because all keys in a secret-key cryptosystem must remain 
secret, secret-key cryptography often has difficulty 
providing secure key management, especially in open 
systems with a large number of users. 

In order to solve the key management problem, Whitfield 
Diffie and Martin Hellman [1] introduced the concept of 
public-key cryptography in 1976. Public-key cryptosystems 
have two primary uses, encryption and digital signatures. In 
their system, each person gets a pair of keys, one called the 
public key and the other called the private key. The public 
key is published, while the private key is kept secret. The 
need for the sender and receiver to share secret information 

is eliminated; all communications involve only public keys, 
and no private key is ever transmitted or shared. In this 
system, it is no longer necessary to trust the security of 
some means of communications. The only requirement is 
that public keys be associated with their users in a trusted 
(authenticated) manner (for instance, in a trusted directory). 
Anyone can send a confidential message by just using 
public information, but the message can only be decrypted 
with a private key, which is in the sole possession of the 
intended recipient. Furthermore, public-key cryptography 
can be used not only for privacy (encryption), but also for 
authentication (digital signatures) and other various 
techniques. 
Encryption When Alice wishes to send a secret message to 
Bob, she looks up Bob's public key in a directory, uses it to 
encrypt the message and sends it off. Bob then uses his 
private key to decrypt the message and read it. No one 
listening in can decrypt the message. Anyone can send an 
encrypted message to Bob, but only Bob can read it 
(because only Bob knows Bob's private key). 
Digital Signatures To sign a message, Alice does a 
computation involving both her private key and the 
message itself. The output is called a digital signature and is 
attached to the message. To verify the signature, Bob does a 
computation involving the message, the purported signature, 
and Alice's public key. If the result is correct according to a 
simple, prescribed mathematical relation, the signature is 
verified to be genuine; otherwise, the signature is fraudulent, 
or the message may have been altered. 

     Since the introduction of public key cryptosystem by 
Diffie Hellman [1] in 1976, numerous public key 
cryptosystems have been proposed and implemented. The 
first practical implementation followed in 1977 when 
Rivest,  Shamir and  Adleman proposed their now well-
known RSA cryptosystem [2], in which security is based on 
the intractability of the integer factorization problem. The 
first use of elliptic curve in cryptography parlance was 
Lenstra’s elliptic curve factorization algorithm. Inspired by 
this sudden unexpected application of elliptic curves in 
integer factorization, in the mid 1980s, Neal Koblitz and 
Victor Miller independently introduced the elliptic curve 
public key cryptography system, a method based on the 
discrete logarithmic problem over the points on an elliptic 
curve. Elliptic curve cryptographic schemes are public key 
mechanisms that provide the same functionality as RSA 
schemes. However, the security of ECC is based on the 
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hardness of a different problem, namely the elliptic curve 
discrete logarithm problem (ECDLP). Currently the best 
algorithms known to solve the ECDLP have fully 
exponential running time, in contrast to the sub 
exponential-time algorithms known for the integer 
factorization problem. This means that a desired security 
level can be attained with significantly smaller keys in 
elliptic curve systems than is possible with their RSA 
counterparts. The advantages that can be gained from 
smaller key sizes include speed and efficient use of 
computing power, bandwidth and storage 

II. RSA CRYPTOSYSTEM 

RSA was proposed in 1977 shortly after the discovery 
of public-key cryptography. It has survived all attempts to 
break it for many years and is considered very strong. We 
will summarize how to use the method. 

1. Pick two large primes, p and q. 
2. Multiply them together to get n = p x q. 
3. Compute z =(p-1) x (q-1). This will be the mod of 

the exponents. 
4. Pick any number d, which is smaller than, and 

relatively prime to, z. 
5. Solve the diophantine equation d x  e=z x k+1. The 

value of k is not important, but the value of e is. 
We have to make sure a positive value of e, which 
is less than z 

That is all. The public key is order pair (n, e) and private 
key is also order pair (n, d).  

A. Encryption/ Decryption 

Divide the message into blocks, so that each plaintext 

block, P, lies in the interval 0≤P<n. We can group the 
message into plaintext blocks of k bits, where k is the 
largest integer for which 2k<n is true. Anyone wishing to 
send a message to Bob make use of e and n. If Alice wants 
to send a message to Bob, he calculates the ciphertexts as  

C=Pe(mod n) 
Alice sends C, the cipehertext, to Bob.  

When Bob receives the ciphertext, he uses his private 
key d to decrypt the message as  

P=Cd(mod n) 
 

B. Signature Generation/ Verification 

Signer sends the Message m with his private key (n, d). i.e.,  
                         S≡md(mod n). 

Then the verification at the receiver side is carried out using 
the public key (n,e) of the signer if  

Se≡m(mod n). 

III. ELLIPTIC CURVE CRYPTOSYSTEM 

In this section, we include a brief overview of ECC.  
ECC can be used to encrypt plaintext messages, M into 
cipher texts, C, and decrypt cipher texts into plaintext 
messages. The plaintext message M is to be encoded into a 
point Pm from the finite set of points in the elliptic group, 
Ep(a,b). One of the design issues in the use of the elliptic 
curve for cryptography is the mapping of arbitrary plaintext 
into  points on the elliptic curve. One method used in this 
paper is given below. We assume a curve of the form  

y2(mod p)=x3+ax+b(mod p) 

A   Key Generation 

The entire document should be in Times New Roman or 
Times font.  Type 3 fonts must not be used.  Other font 
types may be used if needed for special purposes. 

1.Alice and Bob agree on a generator point G=(xg,yg)  
and an elliptic group Ep(a,b).  

2.Alice chooses an integer na and calculates 
Pa=naG=(xa,ya) 

3. Alice’s public key is Pa=(xa,ya)  and his private key is  
na. 
4. Bob also chooses an integer nb and calculates 

Pb=nbG=(xb,yb) 
5. Bob’s public key is Pb=(xb,yb)  and his private key is 

nb. 
 

B. Encryption/ Decryption 

Alice wishes to send a message Pm= (xm,ym) to Bob. 
He carries out the following steps 

1. Alice chooses a random number k. 
2. He calculates c1=kG  and c2=Pm+kPb. 
3. Alice sends the Cm={c1,c2 } as cipher text to Bob. 

Upon receiving the ciphertext pair (c1,c2) from Alice, Bob 
recovers the message as follows: 

He multiplies c1 by his private key nb and subtract it 
from c2. That is, he calculates c2–nbc1= (Pm+kPb) -nb(kG) 
=(Pm+knbG) -nbkG =Pm =(xm,ym)    

 

C. Signature Generation/ verification 

Suppose Alice wants to send a signed message to Bob. 
Initially, the curve parameters 
(q,FR,a,b,[DomainParameterSeed,]G,n,h) must be agreed 
upon. q is the field size; FR is an indication of the basis 
used; a and b are two field elements that define the equation 
of the curve; DomainParameterSeed is an optional bit string 
that is present if the elliptic curve was randomly generated 
in a verifiable fashion;G is a base point of prime order on 
the curve (i.e., G = (xG,yG)); n is the order of the point G; 
and h is the cofactor (which is equal to the order of the 
curve divided by n). 

Also, Alice must have a key pair suitable for elliptic 
curve cryptography, consisting of a private key dA (a 
randomly selected integer in the interval [1,n − 1]) and a 
public key QA (where QA = dAG). Let Ln be the bit length 
of the group order n.For Alice to sign a message m, she 
follows these steps: 

 
1. Calculate e = HASH(m), where HASH is a cryptographic 

hash function, such as SHA-1, and let z be the Ln 
leftmost bits of e. 

2. Select a random integer k from [1,n − 1]. 
3. Calculate r = x1(mod n), where (x1,y1) = kG. If r = 0, go 

back to step 2. 
4. Calculate s = k − 1(z + rdA)(mod n). If s = 0, go back to 

step 2. 
5. The signature is the pair (r,s). 

 
For Bob to authenticate Alice's signature, he must have a 

copy of her public key QA. If he does not trust the source of 
QA, he needs to validate the key (O here indicates the 
identity element): 
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1. Check that QA is not equal to O and its coordinates 
are otherwise valid 

2. Check that QA lies on the curve 
3. Check that nQA = O 

After that, Bob follows these steps: 
1. Verify that r and s are integers in [1,n − 1]. If not, the 

signature is invalid. 
2. Calculate e = HASH(m), where HASH is the same 

function used in the signature generation. Let z be the Ln 
leftmost bits of e. 

3. Calculate w = s − 1(mod n). 
4. Calculate u1 = zw(mod n) and u2 = rw(mod n). 
5. Calculate (x1,y1) = u1G + u2QA. 
6. The signature is valid if r = x1(mod n), invalid 

otherwise. 

IV. PERFORMANCE EVALUATION OF RSA AND ECC 

A. In terms of Security  
The saying "A chain is no stronger than its weakest 

link" is a very suitable for describing attacks on 
cryptosystems. The attackers' instinct is to go for the 
weakest point of defense, and to exploit it. Sometimes the 
weakness may have appeared insignificant to the designer 
of the system, or maybe the cryptanalyst will discover 
something that was not seen by anyone before. The 
important thing to remember (and this has been proven time 
and time again in the history of cryptography) is that no 
matter how secure you think your system is, there may be 
something you have not considered.  
Attacks on RSA: Even though the security of RSA is said 
to be wholly dependent on Prime Factorization there are 
other possibilities of attacks which are summarized as: 
Searching the message space: One of the seeming 
weaknesses of public key cryptography is that one has to 
give away everybody the algorithm that encrypts the data 
except the key. If the message space is small, then one 
could simply try to encrypt every possible message block, 
until a match is found with one of the ciphertext blocks. In 
practice this would be an insurmountable task because the 
block sizes are quite large. 
Guessing d: Another possible attack is a known ciphertext 
attack. This time the attacker knows both the plaintext and 
ciphertext (they simply has to encrypt something). They 
then try to crack the key to discover the private exponent, d. 
This might involve trying every possible key in the system 
on the ciphertext until it returns to the original plaintext. 
Once d has been discovered it is easy to find the factors of n. 
Then the system has been broken completely and all further 
ciphertexts can be decrypted. 
       The problem with this attack is that it is slow. There are 
an enormous number of possible ds to try. This method is a 
factorizing algorithm as it allows us to factor n. Since 
factorizing is an intractable problem we know this is very 
difficult. This method is not the fastest way to factorize n. 
Therefore one is suggested to focus effort into using a more 
efficient algorithm specifically designed to factor n. 
Cycle Attack: This attack is very similar to the last. The 
idea is that we encrypt the ciphertext repeatedly, counting 
the iterations, until the original text appears. This number of 
re-cycles will decrypt any ciphertext. Again this method is 
very slow and for a large key it is not a practical attack. A 
generalisation of the attack allows the modulus to be 
factored and it works faster the majority of the time. But 

even this will still have difficulty when a large key is used. 
Also the use of p-- strong primes aids the security. 
Common Modulus:  One of the early weaknesses found 
was in a system of RSA where the users within an 
organization would share the public modulus. That is to say, 
the administration would choose the public modulus 
securely and generate pairs of encryption and decryption 
exponents (public and private keys) and distribute them all 
the employees/users. The reason for doing this is to make it 
convenient to manage and to write software for. 
Faulty Encryption: Joye and Quisquater showed how to 
capitalise on the common modulus weakness due to a 
transient error when transmitting the public key. Consider 
the situation where an attacker, Malory, has access to the 
communication channel used by Alice and Bob. In other 
words, Malory can listen to anything that is transmitted, and 
can also change what is transmitted. Alice wishes to talk 
privately to Bob, but does not know his public key. She 
requests by sending an email, to which Bob replies. But 
during transmission, Malory is able to see the public key 
and decides to flip a single bit in the public exponent of 
Bob, changing (e,n) to (e',n). 

When Alice receives the faulty key, she encrypts the 
prepared message and sends it to Bob (Malory also gets it). 
But of course, Bob cannot decrypt it because the wrong key 
was used. So he lets Alice know and they agree to try again, 
starting with Bob re-sending his public key. This time 
Malory does not interfere. Alice sends the message again, 
this time encrypted with the correct public key. 

Malory now has two ciphertexts, one encrypted with the 
faulty exponent and one with the correct one. She also 
knows both these exponents and the public modulus. 
Therefore she can now apply the common modulus attack 
to retrieve Alice's message, assuming that Alice was foolish 
enough to encrypt exactly the same message the second 
time. 

And other common attacks are Side channel attacks like 
Timing attacks etc., 
Attacks on ECC: Mainly the security of ECC depends on 
ECDLP. It is already proven that ECC is vulnerable to 
Shor’s algorithm for solving DLP.  Many other algorithms 
have been developed to solve the DLP, some of them are 
Pollard-Rho’s Attack, Pohling-Hellman’s Algorithm etc., 
      Other kinds of attacks that have been tried on ECC are 
Side channel attacks, like Power Analysis Attacks, Cache 
Based Attacks etc., 
 
B. System Requirements for Setting up of 

Cryptosystem 
In setting up any cryptosystem a certain amount of 

computation is required. In this section we will compare 
some of the basic set-up requirements for elliptic curve 
cryptosystems with those for users of RSA 

There are several approaches for selecting an appropriate 
elliptic curve. They all tend to be mathematically very 
complicated and they have some limitations. It is perhaps 
worth pointing out at this stage that implementing elliptic 
curve cryptosystems can in fact be quite challenging 
without a good understanding of the mathematics of elliptic 
curves. 

So we see that setting up the system parameters for an 
elliptic curve cryptosystem is quite involved. However, 
once it is done, the resulting elliptic curve parameters may 
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be used for multiple users within a group (just as in the case 
of discrete logarithm cryptosystems) and each user has his 
or her public/private key pair. These key pairs are easy to 
generate and consist of a random, secret integer k that acts 
as the private key and that multiple of the generator point G 
on the curve that acts as the public key kG for the user. The 
security assumption is that it is hard to compute the private 
key k and the public key kG. 

By way of comparison, the RSA cryptosystem requires 
no system parameters. The first stage of computing a 
public/private key pair consists of the user generating two 
primes of the appropriate size and computing the public 
modulus n as their product. This part of the computation 
can be rather computationally intensive (though not as 
intensive as setting up elliptic curve system parameters). 
The second stage for the user is then to compute the secret 
exponent d, or certain information that allows decryption to 
be optimized (so-called Chinese Remainder Theorem 
information), from what is usually a fixed public exponent e. 
The calculation of the secret exponent (or related 
information) is insignificant when compared to the time 
required to generate the primes. The various requirements 
for the different cryptosystems are given in Table 1 below. 

TABLE I 
SYSTEM REQUIREMENTS FOR RSA AND ECC CRYPTOSYSTEMS 

 RSA ECES and ECDSA 

System 
Parameters 

None 

the field F, two field 
elements that  represent the 
curve, the generator G on the 
curve and the order of G 

Public Key 
Modulus n and 
exponent e 

point P= kG on the 
elliptic curve 

Private Key 

Exponent d or 
corresponding 
CRT 
information 

an integer k where 0<k<q 

 
C. Storage Requirements 

Interest in elliptic curve cryptosystems is fueled by the 
appeal of basing a cryptosystem on a different hard problem 
and the fact that currently such a choice appears to lead to 
smaller system parameters and key sizes for the same level 
of security.  

Throughout this section we will be comparing the 
requirements and performance of 1024-bit RSA (with 
public exponent 216+1) with an elliptic curve cryptosystem 
implemented over the field GF(q) where q is 160 bits in 
length and the field is either of characteristic 2 or of odd 
characteristic. For the purposes of this note, we will assume 
that these different fields have essentially the same 
implementation requirements. In Table 3 we give a rough 
comparison of the storage requirements in bits for the 
schemes of interest to us in this note. 

TABLE III 
STORAGE REQUIREMENTS 

 
RSA 1024 bit n and 
e=216+1 

ECES and 
ECDSA on GF(q) 

System 
Parameters 

0 (4*160)+1= 641 

Public Key 1024+17=1041 160+1=161 

Private Key 
160 (801 with 
system parameters) 

2048(or 2560 with 
CRT information) 

D. Performance 
    With regard to the speed of implementation of these 

cryptosystems the situation is still very unclear. The basic 
elliptic curve operations are in fact quite complicated 3 
(more complicated in fact than the operations required for 
RSA) and so if elliptic curve cryptosystems ever require the 
same size of parameters as does an implementation of RSA 
then the elliptic curve cryptosystem can be expected to be 
slower. In fact it is possible to envisage situations where 
even if the elliptic curve implementation uses smaller 
parameters than some implementation of RSA, the latter 
might remain the more efficient in terms of practical use. At 
present however, the current parameter advantages for 
elliptic curve cryptosystems are such that the speed of 
implementation can compare favourably with the 
performance of RSA. 

Putting quantitative data into this part of the note is very 
difficult. We know of no figures or benchmarks with which 
we can compare an optimized version of RSA on one 
platform with an optimized version of some elliptic curve 
cryptosystem. However we make an attempt to qualitatively 
compare the performance of the various systems to the 
speed of RSA for the relevant operation and these results 
are presented in Table 2. These figures should be taken as a 
guide only and in making these comparisons we have 
assumed that one elliptic curve addition takes roughly the 
same effort as 10 modular multiplications. We feel that, for 
the purposes of this note, this figure will give a rough but 
fair comparison between cryptosystems. All techniques for 
pre computation that apply to discrete logarithm 
cryptosystems will apply equally to systems based on 
elliptic curves. It is interesting to note that even with the 
smaller keys required for elliptic curve cryptosystems, 
signature verification with RSA remains advantageous. 

TABLE III 
COMPARATIVE PERFORMANCE OF ECC AND RSA 

 RSA 1024 bit n 
and e=216+1 

ECES and 
ECDSA on GF(q) 

Encryption 17 120 
Decryption 384 60 
Signing 384 60 
Verification 17 120 

 
Table 3 gives you the comparative performance of 

elliptic curve cryptosystems over GF(q) where q is 160 bits 
in length when compared with 1024-bit RSA and discrete 
logarithm cryptosystems for various cryptographic 
functions. Figures in the table are the number of time units 
required to complete the given operation if we assume that 
one 1024-bit modular multiplication requires one unit of 
time. Not included in this table is that Diffie-Hellman key 
agreement requires 480 time units for each party. These 
figures do not take account of any of the various 
optimizations possible and they should be viewed as a 
rough comparison only. 

ACKNOWLEDGEMENTS 

The Authors wish to thank Mr. N.M.S Desai for his 
comments, which helped in improving presentation of this 
paper. A Vardy wishes to thank Ch. Srinivasulu for his 
invaluable support. 

Aditya Kumar Kommera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2220-2224

2223



REFERENCES 
[1] Whitfield Diffie and Martin E. Hellman “New Directions in 

Cryptography-Invited Paper” 
[2] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining 

Digital Signatures and Public-Key Cryptosystems”, 1977. 
[3] Ranbir Soram and Memeta Khomdram ,”Juxtaposition of RSA and 

Elliptic Curve Cryptosystem”,2009. 
[4] Kumanduri and Romero, Number Theory with Computer 

Applications, Prentice- Hall of India, New Delhi, 2001. 
[5] Blake,Seroussi, and Smart, Elliptic Curves in 

cryptography,Cambridge University Press,1999. 

Aditya Kumar Kommera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2220-2224

2224




